

 AC – 27/12/2023

 Item No. – 6.8 (N)

As Per NEP 2020

University of Mumbai

Title of the program

A- U.G. Certificate in Computer Science

B- U.G. Diploma in Computer Science

C- B.Sc. (Computer Science)

D- B.Sc. (Hons.) in Computer Science

E- B.Sc. (Hons. with Research) in Computer Science

Syllabus for

Semester – I & II

 Ref: GR dated 20th April, 2023 for Credit Structure of UG

 (With effect from the academic year 2024-25 progressively)

Mandatory Courses

Name of the Course: Design and Analysis of Algorithms

Sr. No. Heading Particulars

1 Description the

course:

Introduction:

The Design and Analysis of Algorithms course is a

fundamental exploration into the systematic study of

algorithms, their design principles, and the analysis of

their efficiency. It forms the backbone of computer

science education, providing essential skills for solving

complex computational problems.

Relevance:

In the ever-evolving landscape of computer science, the

Design and Analysis of Algorithms course is highly

relevant. It equips students with the intellectual tools

necessary to address challenges in diverse areas, from

software development to artificial intelligence.

Usefulness:

This course is instrumental in cultivating algorithmic

thinking. Participants learn to devise efficient algorithms,

analyze their correctness, and evaluate their performance,

essential skills for creating optimized solutions in various

computing applications.

Application:

The knowledge gained from this course finds application

in a myriad of scenarios, from developing efficient search

and sorting algorithms to optimizing resource utilization

in network design and artificial intelligence.

Interest:

The course often captivates students due to its intellectual

challenges and problem-solving nature. Participants

engage in dissecting complex problems, devising

algorithmic solutions, and analyzing their efficiency,

fostering a deep appreciation for algorithmic thinking.

Connection with Other Courses:

The Design and Analysis of Algorithms course

establishes vital connections with other computer science

disciplines. It forms the basis for advanced courses in data

structures, algorithmic complexity, and computational

theory, providing a holistic understanding of computation.

Demand in the Industry:

Professionals well-versed in algorithm design and

analysis are in high demand. Industries ranging from

technology and finance to healthcare actively seek

individuals who can develop efficient algorithms to solve

complex problems and enhance system performance.

Job Prospects:

Graduates from a Design and Analysis of Algorithms

course find themselves well-positioned for various roles,

including software engineer, algorithm developer, data

scientist, and research scientist. These professionals are

valued for their ability to devise elegant and efficient

solutions to computational challenges.

2 Vertical: Major

3 Type: Theory

4 Credits: 2 credits (1 credit = 15 Hours for Theory or 30 Hours of

Practical work in a semester)

5 Hours Allotted: 30 Hours

6 Marks Allotted: 50 Marks

7 Course Objectives(CO):

CO 1. To make students understand the basic principles of algorithm design

CO 2. To give idea to students about the theoretical background of the basic data

structures

CO 3. To familiarize the students with fundamental problem-solving strategies like

searching, sorting, selection, and recursion and help them to evaluate

efficiencies of various algorithms.

CO 4. To teach students the important algorithm design paradigms and how they

can be used to solve various real world problems

8 Course Outcomes (OC):

OC 1. Students should be able to understand and evaluate efficiency of the

programs that they write based on performance of the algorithms used.

OC 2. Students should be able to appreciate the use of various data structures as

per need

OC 3. To select, decide and apply appropriate design principle by understanding

the requirements of any real life problems.

9 Modules:-

Module 1 (15 hours):

Introduction to algorithms - What is algorithm, analysis of algorithm, Types of

complexity, Running time analysis, How to Compare Algorithms, Rate of Growth,

Types of Analysis, Asymptotic Notation, Big-O Notation, Omega-Ω Notation,

Theta-Θ Notation, Asymptotic Analysis, Performance characteristics of algorithms,

Estimating running time / number of steps of executions on paper, Idea of

Computability

Introduction to Data Structures - What is data structure, types, Introduction to

Array(1-d & 2-d), Stack and List data structures, operations on these data structures,

advantages disadvantages and applications of these data structures like solving linear

equations, Polynomial Representation, Infix-to-Postfix conversion.

Recursion - What is recursion, Recursion vs Iteration, recursion applications like

Factorial of a number, Fibonacci series & their comparative analysis with respect to

iterative version, Tower of Hanoi problem.

Basic Sorting Techniques - Bubble, Selection and Insertion Sort & their

comparative analysis

Module 2 (15 hours):

Searching Techniques - Linear Search and its types, Binary Search and their

comparative analysis, Selection Techniques - Selection by Sorting, Partition-based

Selection Algorithm, Finding the Kth Smallest Elements in Sorted Order & their

comparative analysis, String Algorithms - Pattern matching in strings, Brute Force

Method & their comparative analysis

Algorithm Design Techniques - Introduction to various types of

classifications/design criteria and design techniques, Greedy Technique - Concept,

Advantages & Disadvantages, Applications, Implementation using problems like -

file merging problem. Divide-n-Conquer - Concept, Advantages & Disadvantages,

Applications, Implementation using problems like - merge sort, Strassen's Matrix

Multiplication

Dynamic Programming - Concept, Advantages & Disadvantages, Applications,

Implementation using problems like - Fibonacci series, Factorial of a number,

Longest Common subsequence

Backtracking Programming - Concept, Advantages & Disadvantages,

Applications, Implementation using problems like N-Queen Problem

10 Text Books

1. Data Structure and Algorithm Using Python, Rance D. Necaise, Wiley India

Edition, 2016.

2. Data Structures and Algorithms Made Easy, Narasimha Karumanchi,

CareerMonk Publications, 2016.

3. Introduction to Algorithms, Thomas H. Cormen, 3rd Edition, PHI.

11 Reference Books

1. Introduction to the Design and Analysis of Algorithms, Anany Levitin, Pearson,

3rd Edition, 2011.

2. Design and Analysis of Algorithms, S. Sridhar, Oxford University Press, 2014.

12 Internal Continuous Assessment: 40% Semester End Examination: 60%

13 Continuous Evaluation through:

Class Test on Module 1: 10 marks

Class Test on Module 2: 10 marks

Average of 2 Class Tests: 10 marks

Assignment on Module 1: 5 marks

Assignment on Module 2: 5 marks

Total of 2 Assignments: 10 marks

Total: 20 marks

Evaluation through:

A Semester End Theory

Examination of 1 hour duration for

30 marks as per the paper pattern

given below.

Total: 30 marks

14 Format of Question Paper:

Total Marks: 30 Duration: 1 Hour

Question Based On Options Marks

Q. 1 Module 1 Any 2 out of 4 10

Q. 2 Module 2 Any 2 out of 4 10

Q. 3 Module 1 & 2 Any 2 out of 4 10

Name of the Course: Introduction to OOP using C++

Sr. No. Heading Particulars

1 Description the

course:

Introduction:

The Introduction to Object-Oriented Programming (OOP)

using C++ course is a foundational exploration into the

principles of object-oriented programming, using the C++

programming language. This course serves as a gateway

for students to understand and apply key concepts in

software design and development.

Relevance:

In the contemporary software development landscape,

understanding OOP principles is crucial. The C++

language, with its strong support for object-oriented

features, is widely used in building robust and efficient

software systems. This course is, therefore, highly

relevant to the needs of modern programming.

Usefulness:

The course is instrumental in imparting essential

programming paradigms such as encapsulation,

inheritance, and polymorphism. Participants gain

valuable skills in designing modular and reusable code,

contributing to the creation of scalable and maintainable

software solutions.

Application:

The concepts learned in this course find direct application

in software development. Participants learn to structure

code using classes and objects, facilitating the creation of

efficient and well-organized programs.

Interest:

The course often captivates students due to its practical

and creative aspects. Through hands-on projects,

participants engage in designing and implementing

solutions using OOP principles, fostering a deep interest

in software design and development.

Connection with Other Courses:

This course establishes strong connections with other

programming and software engineering courses. It lays

the groundwork for advanced studies in software

architecture, design patterns, and application

development, providing a seamless transition to more

complex programming concepts.

Demand in the Industry:

Professionals with a solid understanding of OOP using

C++ are in high demand. Industries ranging from software

development to embedded systems actively seek

individuals who can leverage OOP principles to create

efficient, modular, and maintainable code.

Job Prospects:

Students completing this course may find diverse job

prospects. Roles may include software developer, systems

analyst, application architect, and embedded systems

engineer. These professionals are valued for their ability

to contribute to the creation of robust and scalable

software solutions.

2 Vertical: Major

3 Type: Theory

4 Credits: 2 credits (1 credit = 15 Hours for Theory or 30 Hours of

Practical work in a semester)

5 Hours Allotted: 30 Hours

6 Marks Allotted: 50 Marks

7 Course Objectives(CO):

CO 1. To make learner understand the concepts of OOP

CO 2. To make learner understand the design of OOP through UML

CO 3. To make learner familiar with the syntax of C++

CO 4. To make learner Analyze and implement concepts of OOP

CO 5. To make learner create programs relating to OOP concepts

8 Course Outcomes (OC):

OC 1. The learner will be able to understand, remember, demonstrate, explain and

describe concept of OOP

OC 2. The learner will be able to design UML based diagrams

OC 3. The learner will be able to illustrate the different types of control

statements in C++

OC 4. The learner will be able to analyze and implement concept of OOP

OC 5. The learner will be able to write and create programs relating to OOP

concepts

9 Modules:-

Module 1 (15 hours):

Introduction to Programming Concepts: Object oriented programming paradigm,

basic concepts of object oriented programming, benefits of object oriented

programming, object oriented languages, applications of object oriented

programming.Tokens-keywords, identifiers, constants-integer, real, character and

string constants, backslash constants, features of C++ and its basic structure, simple

C++ program without class, compiling and running C++ program.

Data Types, Data Input Output and Operators: Basic data types,variables, rules

for naming variables, programming constants, the type cast operator, implicit and

explicit type casting, cout and cin statements,operators, precedence of operators.

Decision Making, Loops, Arrays and Strings: Conditional statements-if,if...else,

switch loops- while, do...while, for, types of arrays and string and string

manipulations

Unified Modeling Language (UML): Introduction to UML & class diagrams.

Classes, Abstraction & Encapsulation: Classes and objects, Dot Operator, data

members, member functions, passing data to functions, scope and visibility of

variables in function.

Constructors and Destructors: Default constructor, parameterized constructor,

copy constructor, private constructor, destructors.

Working with objects: Accessor - mutator methods, static data and static function,

access specifiers, array of objects.

Module 2 (15 hours):

Polymorphism - Binding-static binding & overloading, constructor overloading

function overloading, operator overloading, overloading unary and binary operators.

Modelling Relationships in Class Diagrams: Association, Aggregation-

Composition and examples covering these principles

Inheritance: Defining base class and its derived class, access specifiers, types of

inheritance-single, multiple, hierarchical, multilevel, hybrid inheritance, friend

function and friend class, constructors in derived classes.

Modelling Relationships: Generalization-Specialization and examples covering

these principles

Run time Polymorphism - Dynamic Binding, Function overriding, virtual

function, pure virtual function, virtual base class, abstract class.

Pointers: Introduction to pointers, * and & operators, assigning addresses to

pointer variables, accessing values using pointers, pointers to objects & this pointer,

pointers to derived classes

File Handling: File Stream classes, opening and closing file-file opening modes,

text file handling, binary file handling.

Applying OOP to solve real life applications: To cover case studies like library

management, order management etc. to design classes covering all relationships

10 Text Books

1. Object Oriented Programming with C++, Balagurusamy E., 8th Edition,

McGraw Hill Education India.

2. UML & C++: A Practical Guide to Object Oriented Development,

Lee/Tepfenhart, Pearson Education, 2nd Edition2015

11 Reference Books

1. Mastering C++ by Venugopal, Publisher: McGraw-Hill Education, 2017

2. Let Us C++ by KanetkarYashwant, Publisher: BPB Publications, 2020

3. Object Oriented Analysis and Design by Timothy Budd TMH, 2001

12 Internal Continuous Assessment: 40% Semester End Examination: 60%

13 Continuous Evaluation through:

Class Test on Module 1: 10 marks

Class Test on Module 2: 10 marks

Average of 2 Class Tests: 10 marks

Assignment on Module 1: 5 marks

Assignment on Module 2: 5 marks

Total of 2 Assignments: 10 marks

Total: 20 marks

Evaluation through:

A Semester End Theory

Examination of 1 hour duration for

30 marks as per the paper pattern

given below.

Total: 30 marks

14 Format of Question Paper:

Total Marks: 30 Duration: 1 Hour

Question Based On Options Marks

Q. 1 Module 1 Any 2 out of 4 10

Q. 2 Module 2 Any 2 out of 4 10

Q. 3 Module 1 & 2 Any 2 out of 4 10

Name of the Course: Computer Science Practical 2

Sr. No. Heading Particulars

1 Description the

course:

Introduction:

The Computer Science Practical Course covering Design

and Analysis of Algorithms and Object-Oriented

Programming (OOP) using C++ is a comprehensive

exploration into fundamental computer science concepts

and practical programming skills. It integrates the study

of algorithmic design with hands-on application using the

C++ programming language.

Relevance:

In the dynamic field of computer science, the integration

of algorithmic design and object-oriented programming is

highly relevant. This course equips students with essential

skills to solve complex problems, design efficient

algorithms, and implement practical solutions using the

OOP paradigm in C++.

Usefulness:

The course is invaluable for developing a strong

foundation in algorithmic thinking and software design.

Students learn to analyze algorithm efficiency, apply OOP

principles for code modularity, and create robust software

solutions, enhancing their overall programming

proficiency.

Application:

The concepts acquired in this practical course find direct

application in real-world scenarios. Students engage in

hands-on projects where they design and implement

algorithms, analyze their performance, and develop

software applications using object-oriented principles in

C++.

Interest:

The practical nature of the course often captivates

students. Through project-based learning, participants

apply algorithmic strategies, design class hierarchies, and

implement solutions in C++, fostering a deep interest in

problem-solving and software development.

Connection with Other Courses:

This practical course establishes a strong connection with

other computer science courses. It lays the groundwork

for advanced studies in algorithmic complexity, data

structures, software engineering, and advanced topics in

object-oriented programming, providing a well-rounded

education.

Demand in the Industry:

Professionals with proficiency in algorithmic design and

object-oriented programming in C++ are in high demand.

Industries spanning software development, technology,

and finance actively seek individuals who can apply these

skills to create efficient and scalable software solutions.

Job Prospects:

Graduates from this practical course have diverse job

prospects. Roles may include software engineer,

algorithm developer, systems analyst, or application

developer. These professionals are valued for their ability

to contribute to algorithmically optimized, modular, and

maintainable software.

2 Vertical: Major

3 Type: Practical

4 Credits: 2 credits (1 credit = 30 Hours of Practical work in a

semester)

5 Hours Allotted: 60 Hours

6 Marks Allotted: 50 Marks

7 Course Objectives(CO):

CO 1. Analyze and implement algorithms for common computational problems.

CO 2. Implement algorithms using divide and conquer strategies.

CO 3. Apply dynamic programming techniques to solve optimization problems.

CO 4. Implement and analyze algorithms based on greedy strategies.

CO 5. Comprehend the principles of object-oriented programming.

CO 6. Design and implement classes and objects in C++.

CO 7. Implement single, multiple, and hierarchical inheritance.

CO 8. Implement operator overloading for user-defined types.

CO 9. Understand the impact of access specifiers on class members.

8 Course Outcomes (OC):

OC 1. Design and implement algorithms for various problem domains.

OC 2. Evaluate and compare the time and space complexities of algorithms.

OC 3. Apply divide and conquer strategies to solve computational problems.

OC 4. Utilize dynamic programming techniques for optimization problems.

OC 5. Implement and analyze algorithms based on greedy strategies.

OC 6. Design and implement classes and objects in C++.

OC 7. Apply inheritance and polymorphism concepts in program development.

OC 8. Implement operator overloading for enhanced class functionality.

OC 9. Utilize advanced features like friend functions, inline functions, and this

pointer.

OC 10. Understand the impact of scope specifiers on class members.

9 Modules:-

Module 1 (30 hours):

Design & Analysis of Algorithms – Practical

Array Operations:

Implement programs for 1-d arrays, Implement programs for 2-d arrays.

List-Based Stack Operations:

Create a list-based stack and perform stack operations.

Linear and Binary Search:

Implement linear and binary search algorithms on a list.

Sorting Algorithms:

Implement sorting algorithms (e.g., bubble, selection, insertion).

Nth Max/Min Element:

Implement algorithms to find Nth Max/Min element in a list.

String Pattern Matching:

Implement algorithms to find a pattern in a given string.

Recursion:

Implement recursive algorithms (e.g., factorial, Fibonacci, Tower of Hanoi).

Greedy Algorithm:

Solve problems like file merging and coin change using the Greedy Algorithm.

Divide and Conquer:

Implement algorithms like merge sort and Strassen's Matrix Multiplication.

Dynamic Programming:

Implement algorithms for Fibonacci series and Longest Common Subsequence

using dynamic programming.

Module 2 (30 hours):

OOPs using C++ – Practical

Introduction to Classes:

Create a simple class with data members and member functions.

Demonstrate the use of class instances to access data and invoke member functions.

Branching and Looping with Classes:

Implement programs utilizing branching and looping statements within class

methods.

Arrays and Classes:

Develop a program that employs one and two-dimensional arrays within a class.

Illustrate how classes can handle array-based data structures.

Scope Resolution Operator:

Use the scope resolution operator to declare variables at different scope levels.

Display and compare the values of variables with different scopes.

Constructors and Destructors:

Implement programs showcasing various types of constructors and destructors.

Explore default, parameterized, copy constructors, and destructor functionalities.

Access Specifiers:

Demonstrate the use of public, protected, and private scope specifiers within a

class.

Understand the impact of different access specifiers on class members.

Inheritance:

Implement classes to demonstrate single and multilevel inheritance scenarios.

Showcase how derived classes inherit properties from the base class.

Develop programs illustrating multiple and hierarchical inheritance.

Create programs that demonstrate the interaction between inheritance and derived

class constructors.

Understand the order of constructor invocation in the inheritance hierarchy.

Advanced Concepts:

Implement programs showcasing friend functions, inline functions, and the use of

the this pointer within classes.

Function Overloading and Overriding:

Develop programs to demonstrate function overloading and overriding within

classes.

Pointers and File Handling:

Explore the use of pointers within classes, emphasizing dynamic memory

allocation.

Develop programs for both text and binary file handling within a class context.

10 Text Books

1. Data Structure and Algorithm Using Python, Rance D. Necaise, Wiley India

Edition, 2016.

2. Object Oriented Programming with C++, Balagurusamy E., 8th Edition,

McGraw Hill Education India.

11 Reference Books

1. Data Structures and Algorithms Made Easy, Narasimha Karumanchi,

CareerMonk Publications, 2016.

2. Let Us C++ by KanetkarYashwant, Publisher: BPB Publications, 2020

12 Internal Continuous Assessment: 40% Semester End Examination: 60%

13 The internal evaluation will be determined

by the completion of practical tasks and

the submission of corresponding write-ups

for each session. Each practical exercise

holds a maximum value of 5 marks. The

total evaluation, out of 100 marks, should

be scaled down to a final score of 20

marks.

Total: 20 marks

A Semester End Practical

Examination of 2 hours duration for

30 marks as per the paper pattern

given below.

Certified Journal is compulsory for

appearing at the time of Practical Exam

Total: 30 Marks

14 Format of Question Paper:

Total Marks: 30 Duration: 2 Hours

Question Practical Question Based On Marks

Q. 1 Module 1 12

Q. 2 Module 2 12

Q. 3 Viva 06

