As Per NEP 2020

University of Mumbai

Title of the program

A- U.G. Certificate in Information Technology

B- U.G. Diploma in Information Technology

C- B.Sc. (Information Technology)

- D- B.Sc. (Honours) in Information Technology
- E- B.Sc. (Honours with Research) in Information Technology

Syllabus for Semester -

Sem I & II

Ref: GR dated 20th April, 2023 for Credit Structure of UG

(With effect from the academic year 2024-25 Progressively)

Vocational Skill Course (VSC)

Name of the course: Combinational and Sequential Design

Sr.No	Heading	Particulars
1	Description the course : Including but Not limited to:	Combinational and Sequential Design is a course that focuses on digital electronics and the design of circuits that combine multiple digital components. The course covers the theoretical and practical aspects of both combinational and sequential circuit design, as well as their applications.
		Digital circuits are used in many electronic devices, including computers, smartphones, and communication systems. The design of these circuits is critical to the performance and functionality of these devices. Understanding the basics of combinational and sequential design is essential for anyone interested in pursuing a career in the field of digital electronics.
		The course will cover the various techniques and tools used in digital circuit design, including Boolean algebra and K-map simplification.
		The course is highly relevant in today's technological landscape, as all modern electronics devices are based on digital circuits. The skills learned in the course are highly useful in various fields, such as computer and electronics engineering, telecommunications, and robotics.
		The application of combinational and sequential design is quite broad, and the skills acquired from the course can be applied in various areas. Students will be able to design digital circuits, troubleshoot and repair digital circuits, and optimize circuit performance.
		The course is highly interesting and engaging, providing students with the opportunity to explore and analyze complex digital circuitry. It is also connected to other courses such as Digital Logic Design, Computer Organization, and Microcontrollers.
		The demand for professionals with digital circuit design skills is high in various industries such as electronics, semiconductors, telecommunications, and computing. There is an increasing demand for professionals with these skills,

	and job prospects are promising for those with a solid		
		background in digital circuit design.	
		In summary. Combinational and Sequential Design is a	
		course that offers students a comprehensive understanding	
		of digital circuits' design principles and techniques. The	
		knowledge and skills gained from this course are highly useful	
		and applicable in various industries, with promising career	
		prospects.	
2	Vertical :	Vocational Skill Course(VSC)	
3	Type :	Practical	
4	Credits :	2 credits (60 hours in a semester)	
5	Hours Allotted :	60 Hours	
6	Marks Allotted: 50 Marks		
1	Course Objectives(CO):		
	CO 1. To provide students with a comprehensive understanding of combinational and		
	CO 2 To enable studer	uesign principles and techniques.	
	design technique	s to create ontimized digital circuits	
	CO 3 To equip students with the necessary tools and skills to implement arithmetic		
	circuits data path circuits and memory circuits		
	CO 4. To enable students to analyze and troubleshoot digital circuits to ensure optimal		
	performance.		
	CO 5. To provide students with hands-on practical experience in designing and		
	implementing digital circuits using simulation software and real-world hardware.		
8	Course Outcomes (O	C):	
	OC 1. Students can explain the differences between combinational and sequential		
	circuits, and identify their different applications.		
	digital circuit design		
	OC 3 Students can explain and apply the principles of K-map simplification and other		
	design techniques		
	OC 4. Students can design and construct combinational circuits using Boolean		
	algebra and K-maps.		
	OC 5. Students can design and implement arithmetic circuits such as adders,		
	subtractors, and multipliers.		
	OC 6. Students can design and implement data path circuits such as registers,		
	multiplexers, and decoders.		
	OC 7. Students can implement digital circuits using breadboards, logic probes, and		
	oscilloscopes.		
	UC 8. Students can troubleshoot and verify the correctness of digital circuits using		
		vare and measure their performance using various methos.	
9	Modules:-		
	Module 1:		

	1.	Study of Logic gates and their ICs and universal gates:	
	a.	ates	
	h	Study of IC 7400 7402 7404 7408 7432 7486 74266	
	с. С	Implement AND OR NOT XOR XNOR using NAND gates	
	d.	Implement AND, OR, NOT, XOR, XNOR using NOR gates.	
	2.	Implement the given Boolean expressions using	
		minimum number of gates.	
	a.	Verifying De Morgan's laws.	
	D.	of gates	
	C	Implement other given expressions using minimum number	
	0.	of ICs.	
	3.	Implement combinational circuits.	20 Ure
	a.	Design and implement combinational circuit based on the	30 mrs
		problem given and minimizing using K-maps. (Various	
		Equations, SOP, POS forms can be given)	
	4.	Implement code converters.	
	a.	Design and implement Binary – to – Gray code converter.	
	b.	Design and implement Gray – to – Binary code converter.	
	C.	Design and implement Binary – to – BCD code converter.	
	a. 5	Design and implement binary $-10 - \sqrt{3-3}$ code converter.	
	3.	Design and implement Half adder and Full adder	
	h.	Design and implement BCD adder	
	c.	Design and implement $XS - 3$ adder.	
	d.	Design and implement binary subtractor.	
	e.	Design and implement BCD subtractor.	
	b.	Design and implement XS – 3 subtractor.	
	Μ	odule 2:	
	6.	Implement Arithmetic circuits.	
	a.	Design and implement a 2-bit by 2-bitultiplier.	
	b.	Design and implement a 2-bit comparator.	
	7.	Implement Encode and Decoder and Multiplexer and	
		Design and implement 8:3 encoder	
	a. b	Design and implement 3.8 decoder	
	0. C.	Design and implement 4.1 multiplexer Study of IC 74153	
	0.	74157	
	d.	Design and implement 1:4 demultiplexer. Study of IC 74139	30 Hrs
	e.	Implement the given expression using IC 74151 8:1	
		multiplexer.	
	f.	Implement the given expression using IC 74138 3:8 decoder.	
	8.	Study of flip-flops and counters.	
	a.	Study of flip-flops and counters.	
	b.	Sludy of IC 7473.	
	C.	Sludy OFIC 7474. Study of IC 7476	
	u.	Conversion of Flin-flops	
L	е.		

	f. Design of 3-bit synchronous counter using 7473 and required			
	gates.			
	g. Design of 3-bit hpple counter using IC 7473.			
	 Study of IC 7490, 7492, 7493 and designing mod-n counters. 			
	a. Study of 10 7490, 7492, 7493 and designing mod-n counters			
	b Designing mod-n counters using IC 7/73 and 7/00 (NAND			
	nates)			
	10. Design of shift registers and shift register counters.			
	a. Design serial – in serial – out, serial – in parallel – out.			
	parallel – in serial – out, parallel – in parallel – out and			
	bidirectional shift registers using IC 7474.			
	b. Study of ID 7495.			
	c. Implementation of digits using seven segment displays.			
10	Text Books 1. Digital Electronics and Logic Design, N. G. Palan, Technova			
11	Reference Books 1. Digital Principles and Applications, Malvino and Leach, Tata McGrawHill			
	2. Modern Digital Electronics, R. P. Jain, Tata McGrawHill			
	3. Digital Design, M. Morris R. Mano, Michael D. Ciletti, Pearson Education, 2012			
12	Internal Continuous	Semester End Examination: 60%		
	Assessment: 40%			
13	Continuous Evaluation	30 marks practical exam of 2 hours duration		
	through:			
	Students are expected to attend			
	each practical and submit the			
	written practical of the previous			
	session. Performing Practical and			
	Writeup submission Will be			
	continuous internal evaluation. 2.5			
	narks call be awalded for each			
	submission totalling to 50 marks			
	and can be converted to 20 marks			
14	Format of Question Paper: Du	ration 2 hours. Certified copy of Journal is		
	compulsory to appear for the pra	actical examination		
	Practical Slip:			
1	Practical Slip:			
	Practical Slip: Q1. From Module 1 13 marks			
	Practical Slip: Q1. From Module 1 13 marks Q2. From Module 2 12marks			